Study On the Assistant Steering Based On Fuzzy Control

Jinjian Xiao¹,*, Yubo Weng²

¹. School of Automobile and Transportation, Tianjin University of Technology and Education, Tianjin, China
Tianjin Transportation Group, Tianjin, China
*Xjj119@126.com

Abstract: Assistant steering controlling accuracy is important for automobile safety running. In order to gain the Ideal control targets of the assistant steering system, the real operating torque and ideal torque of steering wheel are adopted as the main control variable. In PD controller, the changing parameter is calculated inferentially by fuzzy logic. The real-time steering control voltage is dynamically corrected to approach the ideal steering torque. And the car yaw rate and slip angle is set as performance indicators as optimal objects of fuzzy PD controller. Using of genetic algorithm, the assistant steering system would be dynamically optimized. The assistant steering control method is verified by the computer simulation. The fuzzy PD controller with the genetic algorithm could effectively increase assistant steering controlling accuracy.

Keywords: assistant steering system; fuzzy control; genetic algorithm; multi-objects optimization

1. Introduction

With intelligent automobiles come into being, the accurate assistant steering controlling system is becoming an important factor to the safety running in different road environment with different running velocity[1,2,3]. The assistant steering system also better resolves contradiction between comfort and safety in steering system of conventional automobiles. The assistant steering control would increases the driver’s steering safety and handling stability under complicated road condition[4,5]. The assistant steering system applied range extends from conventional automobiles to intelligent automobiles or even driverless automobiles[6,7]. The assistant steering controlling structure and control factors was optimized systematically. The fuzzy and genetic algorithm was used to fulfill integrated and matched in mechanical steering structures with different steering controller by domestic and foreign researchers.

In the assistant steering controlling system, the automobile steering structure and controlling model are built up by analysis of mechanical steering system. The decelerating structure parameters of steering system and PD controller was considered as optimizing factors. The fuzzy theory was adopted as dynamical adjusting controlling factors of PD controller. The outputting controlling voltage was adjusted and obtained with the objective steering torque. By using genetic method, the ideal steering torque of steering wheel were optimized. And the automobile yaw rate and sideslip angle were optimized at same time. The assistant steering controlling factors and controller optimized with genetic algorithm is simulated.

2. Steering System Structure

Considering automobile total weight, tire cornering stiffness and angle, the two-dimension automobile dynamical model is written as the formula(1).

\[
\begin{align*}
(k_1 - b_k_2) \beta + 1/u(a^2 k_1 + b^2 k_2) \omega_r - \alpha k_1 \delta = I_s \omega_r \\
(k_1 - k_2) \beta + 1/u(a k_1 + b k_2) \omega_r - k_1 \delta = m u (\beta + \omega_r)
\end{align*}
\]

The Matlab Simulink model built up based on the two-dimension automobile dynamical model is shown in Fig.1.
In the formula(1) and Fig.1, \(m \) is the total weight; \(a \) is the front wheel base; \(b \) is the rear wheel base; \(k_1 \) is the front wheel cornering stiffness; \(k_2 \) is rear wheel cornering stiffness; \(\beta \) is the slipping angle of automobile; \(\omega \) is the yaw rate; \(\delta \) is steering angle; \(I_z \) is automobile side slipping steering inertia; \(u \) is velocity.

Fiala theory is adopted as tire dynamic calculation model. The dynamic calculation model explains the relation of the tire cornering stiffness, slipping angle, vertical reaction force, and adhesion coefficient on road surface is written as formula (2).

\[
K_i = K_i(1 - \frac{1}{3} \frac{k_{si}}{\mu \rho a_i} + \frac{1}{27} (\frac{k_{si} \alpha_i}{\mu \rho a_i})^2) \tag{2}
\]

In formula (2), \(i(i=1,2) \) is the front or rear axle, \(K_{si} \) is the front or rear wheel static cornering stiffness, \(F_{zi} \) is vertical reaction force of front or rear axle. The vertical reaction force of front or rear axle is written as:

\[
F_{zi} = Gb/(a+b), F_{z2} = Ga/(a+b).
\]

\(\alpha_i \) is slipping angle of front or rear wheel. The slipping angle is written as:

\[
\alpha_i = \delta_i - \beta - a\omega_i/\nu, \alpha_i = -\beta + b\omega_i/\nu.
\]

The gear rack steering structure with torque sensor, corner sensor, position sensor. \(i_1 \) is the ratio of motor to steering shaft. \(i_2 \) is the ratio of steering shaft to steering wheel. \(\theta_m \) is assist motor angle. \(\delta_i \) is angle of reduction gears. So \(\theta_m = i_1 \delta_i, \delta_1 = i_2 \delta_i \). The steering calculation model is written as formula (3).

\[
\begin{align*}
T_m & = E_p i_1 K_s (\theta_h - \delta_i) \\
T_e & = T_e(\theta_h - \delta_i) \\
T_r & = 2K_{ta} (\delta_i/\nu - a\omega_i/\nu - \beta)/i_2 \\
T_m & = i_1 K_s (\nu - K_b \delta_i)/R
\end{align*} \tag{3}
\]

\(T_m \) is assistant torque of assist motor in steering system. \(T_e \) is driving torque of steering system. \(T_r \) is the torque to steering shaft as road reaction forces on the steering wheels. \(J_p \) is the inertia moment of reduction gears. \(B_p \) is the damping coefficient of steering system. \(K_s \) is torque stiffness of sensor; \(\theta_h \) is wheel angle; \(K_1 \) is front wheel cornering stiffness; \(e \) is front wheel pneumatic trail; \(K_a \) is motor torque coefficient; \(k_b \) is back e.m.f.constant; \(R \) is motor resistance; \(V \) is motor voltage.

3. Steering System Optimization

Using of genetic calculation, steering structure factors, PD’s proportion and differential coefficient are calculated and corrected. \(k_p \) is the proportion coefficient. \(k_d \) is the differential coefficient. \(E_{\kappa}, E_{\eta}, \) and \(E_{\beta} \) is the goal variance, yaw rate total variance and the side slipping rate total variance respectively. The steering system optimization goal is written as formula (4).
In formula (4), w_i is weight. k_p, k_D, i are the lower limit of optimized variables, k_p, k_D, i is the upper limit of optimized variables.

4. Fuzzy PD Controlling Simulation

The fuzzy PD steering controlling model composed of fuzzy controller and PID controller is shown in Fig. 2. The assistant motor voltage is controlled by the fuzzy PD steering controller referencing inputting data. The fuzzy PD controlling algorithm is written as formula (5). And the fuzzy PD steering controlling simulation model is shown as fig.2.

$$V_{ref} = k_p(T_c - T_{ref}) + k_\beta(T_c - T_{ref})$$ \hspace{1cm} (4)

![Fig. 2 Fuzzy PD controlling simulation model](image)

The optimizing factors of fuzzy PD steering controlling model are k_p and k_D. Motor power inputting voltage is corrected with ω_i and β adjusted by fuzzy PD controller. As ω_i and β increasing, k_p and k_D coefficient is decreasing. So motor voltage inputting value is corrected in real time to keep steering action within safe limits.

5. Simulation Analysis

The fuzzy PD controlling simulation model is built up using of MatLab genetic algorithm. The simulation model can realize controlling coefficients’ optimization and get global factors’ optimization of steering system. Set standard torque as 6.2 NM, other factors are shown in table 1. Factor variation comparison after optimization is shown in table 2. Using of automobile steering testing bench, the steering controller based on fuzzy PD is simulated and verified.

<table>
<thead>
<tr>
<th>Table1</th>
<th>Steering Controller Simulation Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>factors</td>
<td>Value</td>
</tr>
<tr>
<td>Total weight m [kg]</td>
<td>8762</td>
</tr>
<tr>
<td>Side slipping steering inertia I_z [kg$ \cdot$ m2]</td>
<td>12790</td>
</tr>
<tr>
<td>Front wheel base a [m]</td>
<td>2.1</td>
</tr>
<tr>
<td>Rear wheel base b [m]</td>
<td>2.3</td>
</tr>
<tr>
<td>Front wheel cornering stiffness K_{s1} [N/rad]</td>
<td>-63529</td>
</tr>
<tr>
<td>Rear wheel cornering stiffness K_{s2} [N/rad]</td>
<td>-119184</td>
</tr>
<tr>
<td>Factors</td>
<td>Before Optimization</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
</tr>
<tr>
<td>Proportion Coefficient k_p</td>
<td>59.8</td>
</tr>
<tr>
<td>Differential Coefficient k_d</td>
<td>2.1</td>
</tr>
<tr>
<td>Ratio of steering shaft to steering wheel i_2</td>
<td>19.8</td>
</tr>
</tbody>
</table>

The side slipping angle summit value of steering system after training is reduced from 0.0378 rad to 0.0352 rad in Fig. 3. The variance decreases with 6.88% compared with before simulation. The side slipping angle is reduced respectively by 10.62% and 13.36% compared with mechanical steering system of no helping motor. And the automobile yaw rate summit value after optimization train is reduced to 0.0798 compared with yaw rate before training in Fig. 4. The yaw rate value is reduced by 2.86%. The variance is reduced by 4.47%. Compared with mechanical steering system of no helping motor, the yaw rate variance is reduced by 15.78%. After steering optimizing training of helping motor control, steering wheel torque can be effectively controlled within reference torque range $[6.8, 5.5]$ Nm. The steering wheel torque is kept within a stable range. The training analysis shows that assistant steering system with fuzzy PD can keep yaw rate and side slipping angle in the effectively and safe range.

![Fig.3 Side slipping angle comparison](image1.png)

![Fig.4 Yaw rate comparison](image2.png)
6. Conclusion

The assistant steering system with fuzzy PD controller is optimized by genetic algorithm. The steering torque, side slipping angle and yaw rate are set as optimize objectives of the genetic algorithm to multi-objective optimize steering system. Using of automobile steering testing bench, the steering controller based on fuzzy PD is simulated and verified. The results prove that assistant steering controller with fuzzy PD and the multi-objective optimized method is effective.

The optimized steering controller with fuzzy PD can reduce the side slipping angle, yaw rate and vibration effectively. The assistant steering controller is availably way to enhance stability and safety as automobile turning running direction.

Acknowledgment

The highway ramp radius effecting work on driving safety cognition is supported by 2019 Tianjin transportation science and technology projects (2017A-24, 2019-13) and the research projects of Tianjin University of Technology and Education (XJKC031429).

References

